

Idioms

Key to the types and ranks of the arguments in the idioms:

Туре	Description
С	Character
В	Boolean
N	Numeric
Р	Nested
Х	any type

Rank	Description
S	Scalar or single item vector
V	Vector
М	Matrix
Α	Array of any rank

The idioms described below must be entered precisely as shown to be recognised.

Idiom	Description
ррХА	The rank of XA (returned as a one-element vector)
≢ρXA	The rank of XA (returned as a scalar)
BV/iNS	The subset of NS corresponding to the 1s in BV
BV/ıpXV	The positions in XV corresponding to the 1s in BV
NA¬"cXV	The subset of XV in the index positions defined by NA (equivalent to XV[NA])
XA ₁ {}XA ₂	XA ₁ and XA ₂ are ignored (no result produced)
$XA_1\{\alpha\}XA_2$	XA ₁ (XA ₂ is ignored)
$XA_1\{\omega\}XA_2$	XA ₂ (XA ₁ is ignored)
XA ₁ {α ω}XA ₂	XA_1 and XA_2 as a two item vector (XA_1 XA_2)
{0}XA	0 irrespective of XA
{0}"XA	0 corresponding to each item of XA
,/PV	The enclose of the items of PV catenated along their last axes
-,/PV	The enclose of the items of PV catenated along their first axes
∍¢XA	The item in the top right of XA (ML < 2)
tφXA	The item in the top right of XA (☐ML≥2)
> φ,ΧΑ	The item in the bottom right of XA (ML < 2)
tφ,XA	The item in the bottom right of XA (□ML≥2)
0=pXV	1 if XV has a shape of zero, 0 otherwise
0=ρρΧΑ	1 if XA has a rank of zero (scalar), 0 otherwise
O=≡XA	1 if XA has a depth of zero (simple scalar), 0 otherwise
	A simple vector comprising as many items as there are rows in XM_2 ,
$XM_1\{(\downarrow\alpha)\iota\downarrow\omega\}XM_2$	where each item is the number of the first row in XM_1 that matches each row in XM_2 .
	A nested vector comprising vectors that each correspond to a
↓ø↑PV	position in the original vectors of PV – the first vector contains the
¥41F¥	first item from each vector in PV, padded to be the same length as
	the largest vector, and so on (ML < 2)
	A nested vector comprising vectors that each correspond to a
↓ø∍PV	position in the original vectors of PV – the first vector contains the
74-17	first item from each vector in PV, padded to be the same length as
	the largest vector, and so on (☐ML≥2)
^\' '=CA	A Boolean mask indicating the leading blank spaces in each row of CA
+/^\' '=CA	The number of leading blank spaces in each row of CA
+/^\BA	The number of leading 1s in each row of BA
{(∨\' '≠ω)/ω}CV	CV without any leading blank spaces
$\{(+/^{\prime})^{\prime} = \omega \downarrow \omega \} CV$	CV without any leading blank spaces
~°' '"\CA	A nested vector comprising simple character vectors constructed

Idiom	Description
	from the rows of CA (which must be of depth 1) with all blank spaces
	removed
	A nested vector comprising simple character vectors constructed
{(+/∨\' '≠φω)↑¨↓ω}CA	from the rows of CA (which must be of depth 1) with trailing blank
	spaces removed
∍∘ρ"XA	The length of the first axis of each item in XA (ML < 2)
↑°ρ¨XA	The length of the first axis of each item in XA (☐ML≥2)
$XA_1, \leftarrow XA_2$	XA ₁ redefined to be XA ₁ with XA ₂ catenated along its last axis
$XA_1 \rightarrow XA_2$	XA ₁ redefined to be XA ₁ with XA ₂ catenated along its first axis
{ω[Δω]}XV	XV sorted into numerical or alphabetical order
{ω[ψω]} XV	XV sorted into reverse numerical or alphabetical order
{ω[Δω;]}XM	XM with the rows sorted into numerical or alphabetical order
{ω[ψω;]}XM	XM with the rows sorted into reverse numerical or alphabetical order
1 = ≡ X A	1 if XA has a depth of 1 (simple array), 0 otherwise
1 = ≡ , X A	1 if XA has a depth of 0 or 1 (simple scalar, vector, etc.), 0 otherwise
O∈pXA	1 if XA is empty, 0 otherwise
~0 < p X A	1 if XA is not empty, 0 otherwise
⊣≠XA	The first sub-array along the first axis of XA
⊣/XA	The first sub-array along the last axis of XA
⊢≠XA	The last sub-array along the first axis of XA
⊢/XA	The last sub-array along the last axis of XA
*ONA	Euler's idiom (accurate when NA is a multiple of OJO.5)
0=⊃ρXA	1 if XA has an empty first dimension, 0 otherwise (ML < 2)
O≠⊃ρXA	1 if XA does not have an empty first dimension, 0 otherwise (ML < 2)
LO.5+NA	The content of NA with each item rounded to the nearest integer
XA↓≒⊷NS	XA redefined to be XA with the last -NS items along the leading axis
AAV	removed; NS should be negative
□AV: CA	Classic version only: The character numbers (atomic vector index)
ПУТТОК	corresponding to the characters in CA